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Abstract

A detailed slu(ly is m:lde of Ihe effects of variations in

I-'uninalion and n11alerial parameters of thin-walled composite

fI':II11ICSO11 their vibrational characterislics. The structures

considered are semici_'ular thin-walled frames wilh I and J

sections. The fl:mges and webs of file frames arc m_xlelcd hy

using two-dinllenlsional shell aml plate finite elements. A mixed

f_,'mulatit,1 is used with the fandanllenlal unknowns consisting

of bolh Ihe generalized displacements a,d stress resuh:mts in

Ihe frame. The frequencies and n)_Kles predicled by the Iwo-

dimensional finite element mtxlel are compared wilh lhose

obtained from experiments, as well as with lhe pre(liclionls of a
one-dimensional thin-walled beannl finite element mc_lel. A

detailed study is made of the sensitivity of the vibralicmal

resl_mse I- varialions in Ihe fiber orientation, malerial proper-

lies of the individual layers, and boundary coadilions.

Inlroduction

The physical tmdersiamling and the numerical simulation

of the dynamic Ies_mse of hlmimlied anisoliopic sliucltllex
have recenlly he/++.'ollllethe focus of intense elforls because v,f

the expanded use of lihrous com_)siles in) aerospace, aulo,no-
live. shiPbllilding, arid oIlIer ill(lustries, arid the nee(I Io eslab-

lirh Ihe I)ractieal limits of Ihe dynamic load-carrying caP:d'_ilily
Of _tl'lll.'llll'eS made from lhese tllatcli_ils. References I-4._ :ire

imlicalive of the general interest and effoils fiv,.'usedon various

aP+pecls of the vibration of structures. Experimental sludies
have been perfomlcd on Ihe free vibration and impact-response

of lhin-walled composile frames ;rod stiffeners. I_ One-

dinllensional Iheories have been developed for the stalk',

vibralion ;Inrl buckling anlalyses of Ihin-walled fran_

SIFIIcIIIFCS. lh)wever, ill') system:itic asses,sl111ellt has beel11

re:fie _f Ihe nmge t_f validity of Ihe basic assun11111tions of Ihese

Iheorics. Al_pmxin11:lle analylic:ll and nmmerical techniques

have been applied to the study of the vibrational response of

stiffenels. O,ly a fewiSOllt)pic aild co11111)osile ' '_ 2
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Puhlicali_ms : examine the effects of variations in lamination
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and geometric paranneters of con111+t)sile panels Oil their vibra-

tional chanlcteristics, and these publications do not consider

thi,-walled composite frames.

The present study Stllnll11larizcs the rcsldls Of a retell11

study _N<_)r. Carden. Peters) :_4on the effects of varialiolls in

the lamination and geonlletric parameters of lhin-walled cora-

l.+site frames on their vibntliomd characteristics (frequencies.

:rod energy c'omrKmenls asm_.'ialed with difTere.t modes). The
fiames considered are semicircular, made of thin-walled

graphile-epoxy material wilh I +rod J sections aml have a

36-inch radius (see Fig. I ),

Computational Mtxlels

Two compulalionl+'d m(xlels are used flw the thin-walled

composite frames study, hi1 the first model, the flanges and

web ate modeled usi,g two-dimeasional shell and plate fildte
elemenls. The second .m_el is a finite element discrelizalion

of Ihe one-dimensional Vlasov's type thin-walled beam theory+

llencelorth, the two mqxlels will be referred to as IwO-

dimensiomd (2D) and one-dimensional (l I)) finite elenllent

mtxlel._, respectively.

Mathemalic:d Formulation

l+) 1'wo-dimension:ll mtxlels. The a,alvlic;d flwmulalit)n

for lilt" two-din)enlsional m<)tlels is based on Ihe S_lll<lels-

Budi:msky shell theory with Ihe effects or Iransverse shear

del'om)alion, all(I lamim_led anisolmpic maleri;d response
inlcluded. A mixed fomlltlllllionl ix ilsed wilh the fundanlllcnlal

unknowns consisting of [_)th the generalized displ:lcenne,ts and

the slress result:mrs in the frame (see Fig. 2 for the sign
COI11VCllliOll ).

I-licubic shape functions are used to approximate eachl of

Ihe gener:llized displ:lcemenls and the stress resuhants. The

number of displacement nodes in each element is 16. The
slress resultlmts are allowed to be di._ontinuous at inlerelemenlt

I'_undaries. The total number of stress-resuhant parameters in

each element is 128. The elenlent characteristic arrays are

obtained by using the two-field Hellinger-Reissner mixed

variational principle.



hi Onc-dim_l_siona1"i)i6dels. The atmlylicnl fon+.dnli(.l

ft." ,)ne-dime,+sional mo<lels is based on 11 fornl of Vltlsov's

Ihht+w'dled be;us lheol-y will) lhe effet'Is of flexural-lorsion:ll

c()tiPling. Inmsverse shear defonnalion, and rolary incrlia

ilwhtded. "rhe ftmtl;ilnet)l+il )ll)kl)owns consisl of seven itllell)al

Iot+es +ttl(| seven Beneralized dimplncements of Ihe beam (see

I:i_. 3 It)r Ihe si_l) cv, nvenlion). +]'lIe elenlenl chantclerislic

arr_lys are obtMned hy ttsin_ a modified fi)rm of Ihe I lellinBer-

reismner mixed vari;Itionnl Principle. The modifiealion con-

mimls of +itiBl)lettliilg lhe flttlCliOll;il ()f)hal principle by tWO

terms: I) lhe l,a_rnnge multiplier ms)re'it)led with tile con-

mlrninl condition rehtling the rolnlion of the cross section ;rod

the Iwiml degrees of freedom: mr| 2) a reguhtrimatio)! lerm Ihal

is tlumlnllic in Ihe I.ngrnnge nmhiplier. Only (7' continuity is

required for the genendized displacemenls. I.agrangian inler-

polalion fnnclions tire used for ttpproxim;tling eit(.'h Of the

/_eneralized (lispl:Eemenls, inlern;d forces and l.ngnmge

muhil)lier, "]he poly,..uhd functions for the inlernal G}rces

mrl the l.;tgrange muhiplier tire o.e degree lower lhan those of"

lhc gener:dized (lisplm.'en)enls. In lhe present study tlutldr;_lic

polyn.nlinls me used i. allproximming the ge,)endized dis-

phwemenls, l.inear polynomi:ds nre used in approxhmtting

e+ich of the imemal h+n.'es and the Impmnge mulliplier. The

inlet.al G)rces and lhe Lagrtmge muhiplier are allowed Io I_."

(tisc.ntinuous al inlerelement txmndaries. For each eh:menl the

Iol.'ll ittlillI-Per of Beneralize(I displacemenl par.'m)elers in 2 I. the

Iol:d mmd)er of inlenml force pnr;unelerm in 14 and Ihe Iolal

)n.nlwr of I.:tgrange muhiplier imramele,s is 2. N(M+r. Pelers

mttl Mill ++slq-emcnl lhe fundamenlM eq)utlion_ of the thin-walled

l+emt) lheory, m

For tluasi-isolr<)l)iC huninnled coulposiles, n.meric.r
experimenls Io be described subsequently trove demonslr+'tled

lit:if tetimq+tliihly +it'cllrttle tee)tills cnn be obtained using the

one-4.1inlensional i)._lel when the hul)ilmled c'ovnl+osite is

rel)lnce(I hy :u) eguivatenl is0trol}ic mnlerial with Ihe fidlowin_

Yotmg's m)d .,;hear mqxlt,li:

I! = All/h (I)

(; = A_Jh <2)

where A_l +uld A_ +:re the extensional stiffness in tile x (lirec-

lion. and Ihe iv)-phnle she.r stiffness used ii) the classical

hmlivmli, m Iheory. respectively: and It is the Iolal w:dl thickness

(of the l'lnnBe or web). This al+l)roxinmlion wns mlopled in the

pit-_enl sludy.

Finile l-lemem Equal)on)

The fil)ite ele,nenl ellS)lions for erich individtml elemenl

of lhe If) :1114.121) models can be (';isl ill the following COt)l[_[lt'l
Io111):

-f+

(I KI - (,)21Ml)IZl = (} <3)

_here I Z} is Ihe vector of tile elemem degrees of freedom: (0 is

Ihe frequency of vibration: IKI and IMI .re Ihe genernlized

_lHlness :In(l IIIII._S ill)ill'ices. The explieil leo)ms of Ill:lit'ix

rerays ;imso<.'inled wilh {Z l. I KI and IMI tire given in Nc_)r _intl

2

Ai..lerson _', +l))d Noor :rod Peters 27 for the lwo-dinlensiomll

mc)del._, and Noor, el al" f"or the oneidtmensional mtxlel.

Vibralional Sensilivity Io Variations in Lamination and Male-

rim Pt)ranletcrs

The expressions for the sensilivily alert)alive) of the

frctluency nnd rCSlWm.m_ vector wilh respect to the htmin_llion

nnd m;tlelitll paranlelers, _Li, of the COml)Osile frames tire given

by: 2m

;J_.-+-- _.l,.,,,_.,,,+(zl' ! _ (,if IZl _4)

:md

OlZ} *
+_i = IZl +c+ IZ} (5)

:,k

where { Z} ccpresenls n rnulicuhir solulion of file etlualions:

..... _k _" -- (t)_

4"

alMI ao)" )

161

find e i tire multipliers give)) by:

,i+olc+=- E (I_:}'IMIIZI+{Z} {Z} (7)

In Eqs. 4 It) 7, Ihe eigenveclors nre nss)mled It) be nor

Illiilizetl wilh respect 14.}I M I. i.e.

rk

IZI'IMIIZ} = I 0<)

The expressions for Ihe tol:d complemenlary slrain

eltet'gy i_f the frml)e, l.l". and its derivatives wilh respecl It) _.i.

m'e given by:

it" = + )-'- lnil'It+l{)i) <t))
t+Jt'llll.'lll _

nnd

at," ( + oIFI+xi la"t'tlilt' Ill) + ";_L+' If:Jill) (to)
eleluenl _ )

For Ihe pt)rl)t)se <)l" obtaining ;inldylic derivatives wilt) respect

Io some of Ihe him)it)ilion par;imelels, such ;is the fiber orienl_t-

OlVl

lion nngle t)f different hlyers, it is convenienl It) exl)res'+ _-i in

OtFI '

lernls of --+'_i ;is ft)llows:

OIFI awl )

_j_+-=-IFI ¢-a_.- IFI (II)

The mnlrix is evnhmled using the nnalylical derivnlives

of Ihe material stiffness nmtrix of ench laminttle (flanges nntl



webL The n11alerial slilTnless matrix (,f the hmllinale is given in
Jones.2_

Experimenmtl and Numerical Studies

ApI,aratus and Test Procedure

a. Spe(:intens. Two specimens, shown in Fig. 4, were
tested, an I-section aud a J-sectiou frame. Nominllal din]etlsions

of each cross seclion are shown iu Fig. I. Weighl of the frame

sections was 3. 181 and 4.085 lb. (I.443 and I.g53 kg) for the I

and J frames, respectively. The frame sections were made from

ASJ/52(IX graphite/epoxy unlidireclional tape layed tlp in a

nulanner which resttlte(I it] essentially unifonn stiffness proper-
tics i. the circumferential direction (i.e., the stiffness ct_ffi-

cleats are indepeadent of 0). "rite material properties for the

individual htyers are given in Fig. !. The laminate stacking

seqnettce for the I-set'lion was t+4._/I)/901_ and 1±45,al/901z, for

the J-section. Eat'hi fnnne section was semicircular with a

,Ihnneter of 72 inchles (1.R288 m.). Bottded to the outside

fhatge of each franne was n sixteen-ply l±45/0/43_)12,, quasi-

isotropic skin made of the same materi:d. The fntme .sections

were constructed so th;|t the skin would extend 0.5 inches

_0.(H27 m.) beyond each side of the bottom flange of the
h'ame. Measured dimenlsions were ased in one of tile finite-

elenllent models and results were conllpared to notninlal dimen-

sion results anld the experimeut;tl data.

b. h:._trlunentalimt and lest method. A photograph of

the test eqlltipmenl :ntd composite fr:tme specimens is shown it)

Fig. 4. The e,ds of the frame sections were potted it) a fixture

which was Ix, hed to a large steel I'_annl backstop.

At) ah'-sh;tker, conmecled to an air COlopress¢_r. was used

to excite all test specimens. Excitation was Ix,th in-plane

(radi:tlly). and out-of-pl;nlle. R)r in-phme excitalion, lllle shaker

was positioned so that the pulses of air struck approximntely

ahmg a nt,rm;tl to the surface of the skit]. For out-of-plane

excitation), a piece of styr_ffo;u, was attached to the side of the
fl'anlle hy double-sided adhesive t:tpe. Pulses of air struck the

fhtt Face of the styrtlfoant along a normal to the face. The

position of the air-shaker was ;11djusted if the excitation was

Stl'iking 41111a mxle.

A nl]iniature accelerometer was attachle(I at a fixed

h_'alion Io Ihe fr:noe sections with double-sided adhesive tape.

()nlput from Ihe accelemmeter was amplified :rod displayed

nh,ng Ihe vertical axis of an oscilloscope. Natural not_les were

determined by tuning Ihe excitation fretllltency of Ihe air-shaker

to pnxhtce an :tcceler:ttion m;ixinmm on the vertical deflection

on the oscilloscope. Output ItJso passed thro;tgh a low pass

filter lind wits displqyed its vibrational frequency on a fre-

tittency conflict. *

Sit)c) manual equipment w;11s used in nmpping the uodal

locations dnring lhe vibration survey of the frames, only n._lal

lines associated with gross in-plane, and gross out-of-plane
n_tions were monitored. Other nodal lines, associated with

localized defomnation patterns were not surveyed. These

localized deformations were noticeable in some of the higher

vibration modes, with complex deformation patterns and/or

strong coupling between in-phme and out-of-plane mt)tious.

Finite-Element Grids

Two-dimeusional models were genentted for the actual

fnnnes {lest specin_ns) demribed it) the preceding subsection.

as well as for the correslxmding frames with nominal dimen-
sions. JJenceforth. the fr;tt111eswith itCtu:tl and nlonllin:tJ dit111en-

sions will be referred to as the actual and nominlal frames.

respectively. For the actual fntnoes, spline inlerlx_lations

through meusured din]ensions were used to genenlte lhe wall

thicknesses and coordinates of the nodal points. Isoparametric

finite elements were used to approximate )be variations in

stil'fllesses and geometry. The one-dimensional models consid-

ered hereit11 are for the frames with nominal dimensions. The

grids used for [x)th the one-dimensional and two-dimenlsional

models are de_'ribed subseque.tly.

Twn-dimensinnal mnekgs. An 18x8 grid was u_d for

modeling the whole l-section franlle, hi1tMs grid two elemcn.s

were used Io model ench of the web, top and bottom flange

sectiotts. The part of the skin adjacent to the bottom flange

section was treated as part of the flange. One element was used

to mt_lel ettch of the two parts of the skit) section extending

beyOlld the bottott] flange (see Fig, I). "I/he mkhlle snrfaces of

the top flange an(I tbe web were taken to be their reference

snrfaces. The middle sttrface of the conobinled I:x)ttotn flauge

and skit] was taken to be the reference snrface.

At] 18x7 grid was nsed fl)r m(xleling the whole J-section

frame. The distribution of the elements was sinfilar to the

I-section fran_. Only one element was used to nu_el the top

flange section (see Fig. t ).

Totally clanllped attd partially clamped snpport condi-

lions ),ere considered, For totally cl.'nnped supIx',rts, all tile six

generalized disphtcements were restrained

(ut.=uz.=w'=¢t.=02.--0_._l). The partially chmllped

conditionls were obtained front the totally clamped case by

successively removing the restraints on one. as well as on

comb]tin]ions, of the disphtcemenlt and rotation compcments.

One-dimensumol nuMeLs. A nnifom] grid of 24 elements

was used in m(xleling each of the I-section and J-section

fratrles. The principal sectorial propt'rties of the cross sectiou

were evahtated using the Fortran program listed in Coy)ire. _l

A handheld vehx:ity pnlbe was moved ah.lng the fr:tnne to

deternthte m_le hg'ationls anld nKxle sh::pes. The output of the

probe was displayed along the horizontal axis of the omillo-

scope. 'll)e probe ;tnd accelerometer outputs combinled to

create a I.issa.jotts p:lttem on the omilloscope. A phase shift ill

the Lissajous pattern (x:cuned when the vekx:ity probe passed
over a Ilttdc.

Identification of Modes and Estimation of the Error in the
One-Dinlension:fl Model Predictions

The two-dimenlsional models can be used to: a) identify

the in-platte, ot:t-of-pianle and Cotlpled nltx.les, and b) esth)11ate

lhle error it) lhe predictions of lhe onle-dimensional n.txlels.

This is accon.plished through decon]posiug the comph..nlleutary



slraitzenergy. II". Eqs. O, ass)el:tIed with each elI',ration mt_.le,

into three ctlnll_Wlenls, UI. [.I 2 anti u_ (see Table I). 1lIe first

Iwo conlponenls, (31 and [.I2 are asscN.'iated wjlh the in-plane

m)d ttul-of-phn)e slress resullanls, resl_clively. The Ihird

t'otnfrmenl, !1_, is associaled wilh Ihe slress resultants Which

ate parlictthlr It two-dimensional plates and shells (not presenl

in one-dinlension:tl beam mc_tels). The in-phme and out-of-

itlane m(xles corresl_ond In tile modes for which [Jr/t/c and

I I_/ll' are close l) I. respeclively. The strongly coupled mtxles

cornesl_,rl to nearly equal vahtes of Ut/U c :tad U2/tJ':. The

ratio l.fJl.J <' is indicative of the error in the t.le-ditnensional

model pn.'dictions.

II is also lisefld It parlilion lhe Iolal coulplentenlary
',:Ira)it1 energy, ass_.'iated wilh each nrx'le, into three cont-

l)onenls. Lift. [I,,,. [)ift rel)resenling the contribulions of lhe top

flange, well, and l'w)lttuu flange [includi,lg the skit)).

('onql;u-ison of Experimental and Finite-Elen)ent Results

"lhe results of tile experimental and nun)erical studies are

sttnnllalized in Figs.._ throtlgh 9 and "Fahle 2 for the l-section

hatoe, and it) Figs. I(I Iht'tuigh 14 and Table 3 for the .I-section
ft:mte. For the finite element m(xlel three cases are considered.

nat)tely, totally chtt)q_d edges (with hqh lraqshitiot)al and

rq_t:tlitut:tl restraints), partially c'lanlped edges with _2" not

restrained, attd parlially cl-'tmped edges (with t, i . in lhe flanges

and _z" not restrained).

The nla×h)lutt) and miniature values of the frequencies
(d'q|lined hy the lwo-dituensional fhlite elentent int_el

tut.tcspt.rling It the lot;dly chnnped and parlially chnnlX-d

edges) are shown i0) Figs. 5fit) and IOfit) ahmg with the ex-

l_crintenlal frequencies. (See also "l':lhles 2 and 3L Note thai

the exl_rituental fretluencies :ts,_ocialed wilh mode 9 of the

I section. :tt)d of the J-section. respectively, are close in fic-
q,cncy. Mo(Ic_ fi_r these frequencies have very close n_lal

locations. Al_o. the 12lh tt_lc of the I-st:clhm (see "['able 21

was toisscd in the exlwt-ituenlal survey v,hich is in(Ileal)re td

the diffictthy of deter)tIthing the high frequct)cy nr_les. The

f:tt'l thai only one of the tnulliple exl'_.'ritnenlal fueqt0cncies with

close nodal hx'ations (n_xle 9) is predicted by the finite ele-

tnc,ll nr,<lel tn:ly Ix. attributed to imperfections in lamination

a,td nmteri:tl properties: and/or to geometric nonline:lrities

which were not incorl_'Waled into the finite element mqxlel, in

Figs. 5{1'_) and 10(h) bar challS are given for tile frequencies

edwin)ned by lwo-dinlensional n_dels of the actual and non)inal

It-.'ti)_cs;tlt)t)g with those of the one-dimensional n_xlel.

In Figs. 6 and I I bar charts are given showing the two

dccot))p,_silitms of Ihe con)l)le11)ent:try sir:tin energies, associ-

ated with tile different vibration mtxles, described in tile

precedittg svbsection. The ordinates in Figs. 6(at and I lilt}

rcpresenl the ratios of I..ll/l_]c,U2AI e and U:t/U c, and the

ordinates in Figs. 6(b) and l lib) represent the ratios

[ It/-/I, jc U,,./I. jc UI,f/U c for each of Ihe nrx,les.

The nw_le shapes ass_x'iate(I with the first five ex-

perin)ental and analytical freqnencies are shown it) Figs. 7 and
12. Two views are shown for the defomlations as._ciated with

each mcxle: side view and top view. Also shown are the nodal

lines of the w" displacement on the top and bottom flanges. As

can be seen fats'| Figs. 7 and 12. the deforn'uttion patterqs

asses'tared will) higher n'K)des are fairly complex. As met)-
It)ned i)reviously, the only experimental mxlal lines nero)toted

are those assoc.'tared with gross in-plane, and gross out-of-plane

at)lions. Genenllly. good agreement between the finite ele-

ment and experi,t)enlal nodal lines is thieved in Ihe_ cases.

()liter nodal lines, ass('v,:iated with Ex'alized deformations are

shown only for the finite element solutions.

The sensitivities of the vibration frequencies to tl)e fiber

orientation angles of the top flnnge, web. and I'x'Dttom flange

and skin are depicted in Figs. 8 and 13. The ordinates it) Figs.

8 and 13 repre_nt the _nsitivity derivatives with respect to tile

indicated fiber angles. Each of the _nsitivity derivatives is

normalized by dividing it by the corresponding fretlnency of

vil'u'ation. The sensitivities of the vibration freqnencies l) the

materi:tl parameters El. E i. G I t and Gel are shown it) l.igs, q

and 14. The ordinates it) Figs. 9 and 14 rcpresenl lhe sensiliv-

ily derivalives with respect to the indicated ehtslic tnoduli.

F.:tch of the sensitivity derivatives is divided by )be corresl_md-

ing frequency and multif_lied by the cortespc,tdit)g elastic

n)cxlnhts. Tile effects of hml)chtry conditions on the frctluen-

cies obtained by the two-dimensional finite element models are
show,) it) Tables 2 and 3.

An ex:mlination of the experimental and finite clement

results (Figs..5 to 14 and Tables 2 and 3) reveals:

I. Reasonably gtx'!,d correlation is observed between.

numerical sinutlation and experiment for the l-section frame

(see Fig. 5(b)). The ratios of the first five experts'rental fi'e-

qnencies to the corresponding finite element ones ranged
between (I.92 and 1.02 (see Table 2l. For the J-section fl':tme

tile correhttion is not :In good (Fig. IO(hl). The corresponding
ralios for Ihe first five frequencies were 0.87 to I.(}4 (see Table
3).

2. Most of the experimental frequencies for tile I-sect)tin

frame an(t tile J-section frante are between those for tile totally

|111(.!partially chtnlped supports (with Ix'_th 02. and II I , in the

flanges nol restn6ned). This is parlicularly true for Ihe higher.

modes. For some of the n_'xles Ihe experimcnlal frequencies

are closer Io Ihe parli:dly chlmped support case (e.g., mtxIcs Ill.

I I and 12, _e Fig. 5{b)). For the I and J-seclion frames Ihe

finile element tn_xlel predicted only one of the mulliple ex-.

per)mental frequencies wilh close mxhtl lines (mode 9). The.
other experimental frequencies were belween those for Ihe

tolally and partially clamped sttpporls (wilh both _2" :rod un- in

the flanges not reslrained, see Fig. IO(h)).

3. The lowest five frequencies thin)ned hy the one-

dimensional model are rensonably clo_ Io Ihose )bin)ned by.

the corresponding lwo-dimensional n_del. This is parlictthtrly
Irue for the J-bean) where the errors in Ihe predictions of Ihe

one-(limensional nrxlel were well below 10% (see Figs..5(at
and lOt:t)).
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4. hlentificalion of Ihe mc_les as in-plane or opt-of-plane

c;n) best be :ic'conlplished hy examining the energy (.',m-

l_onenl.% [.Jt/U c and tI2/LY, associated will) the in-l)lane :rod

oat-of-plane forces, respeclively (Figs. 6(:0 and Ill;t)). Also.

the error to be expected when using onedimensional thin-

walled beams can be estimated by conIpuling the ralio of the

energy ;tssrK'ialed with the tim:as neglecled in lhin-walled

Ix.ares to the lolal energy. [.IJl.l' (set- Figs. 6(:t) and I Ira)).

5. "]'he coupling between in-plane and oul-of-pl;me

deformations is nKwe pronounced in the J-section than in the

I-sect),,) frame. As an example. 1he first twenly modes fl)r the

I seclion flame had eilher III/[P _rl.12/IJ _' _> 0.75. On the

other hand, only m(xtes I to 4, 6. 8 and IO in the J-sect)o*)

fr;nne had tYt/1..Ic orI.J2/U c > 0.7.S. For the higher m(xtes

neilher the ratio I.h/U (" nor' U2/[J c was close to I (see Figs.

6(,'1) |111¢1l I(a)).

6. For the I-st(lion frame, the contributions Io the IOlttl

energy of the lop an(I hollom flanges far exceeded Ihal of the

web for any given mcM.le. The ratio of the slrain energy in the

web to 1he Iotal str:tin energy was less Ih:m 0.20 for the first let)

tn,des anti less Ihan ().28 fl)r the succeeding lea nl_x]es (see

Fig. 6(h)). For the J-seclion frame the smdn energy in the web

apl_roached 0.4 of 1he Iolal energy in some of the m(xles (see

Fig. I I(b)).

7. For the I-st(lion flame, the strain energy of the top

flange is 1he (huninant energy in 1he in-plane defi'wmation

modes anti the slrain energy of 1he hlllOnl flange (inch)cling the

skit)) (Iomi,)ates fiw the out-of-pl:n)e (lefl_nnalion modes (see

Fig. 6(h)).

_. "T'he vil'walional resl_mse of Ix)lh the l-s_'tion and

J-section fraznes is very sensilive to restraining the uu displace-

meals of the flanges (and skit)). It. is somewhat seas)live to the

rt_1:tliomll restraint on (D2- (see T.'thles 2 and 3). llowever, it is

insensitive to reslraining the displacement COml)onents u 2- and

w ". and the rolali(m (I)I ..

9. The vihnatiqu)al response of Ibe I-section and J-section

is more sensitive to variations it) the +45 °, -45 _' fiber angles of

the lop flange than Io variations in Ihe ()o or 90 ° tibet" angles.

The variations in Ihe i)° antl _)° fibers of the web and 1he

I_qt_,)'l el;rage have a noticeable effec! on some of the modes.

bttl 1heir effecl is generally less Ihan Ihal of Ihe 4.5_, -_.5" Iibels

(see Figs. 8 and 13). The vihratitmal response is also m,u'e

sensitive to variations in the elastic m_luli F.0 and (i t _ than to

any of the other material cleflb.'teals (see Figs. 9 and 14).

IlL The sensilivity of the vibration frequencies wilh

respecl 1,1 variations in Ix)lh El. and GI; t is almosl the same for

all the m(_les (see Figs. 9 and 14). "lllis may be auributed to

the quasi-isOlml)k, lamination used for IX)lit the flanges lind the

web. It snggesls tile feasibility of replacing the quasi-i._'qropic

composite, in the one-dimensional thin-walled be`.))))model, by

an eqpivalent isolropk" nlaterial, as was clone in tl)e present
st)lily.

Conlrnenls on Sources of Errors

Soun:es of Errors

The determination of natural frequencies and modes
from vibration tests and nmnerical m(xtels involves nvmerons

IX'_ssihle sources of discrepancies or errors which are related It)

mechm)ical and etlnipment limitations :is well as to theorelical

and physical assumptions. The errors in vibration tests include

inexact eqt,ipment calibration, excessive noise, mare)fit(luring

variations, incorrect transducer locations and operation i, a

region of nonlinearity of the response. Numerical mtxleling
em)rs can be atlributed to in:iccuracies in estimated material

properties and insufficient n_deling delail. In the present

study care was exercised in collecting and recording 1he

vibration test data, and in the .selection of the numerical nxxlel.

Ilowever, nominal material properties and layups (fiber orien-

tation of the die!areal layers) were used in 1he mnnerical model.

The sensitivity analysis helped in identifying the material and

hun)nation parameters thai need to be accurately (letennit)ed.

Concludin_ Remarks

A detailed study was nlade of the effects of variations it)

lamination and material parameters on their vibration;d charac-

tar)slits of thin-walled COmlX)site frames. "]1)e structzzres
considered are semicirctzlar, thin-walled frames will) I at)d .I

cross set'lions. The flanges, we[) and skin of the slifleners have

quasi-isolropic laminations with fiber orienlation being con)hi-

nations of + 45", 0" and 90" layers. Two COml)Ulational n_tlels

are uscd fl)r predicting the vibnuional characteristics. It) the

first model, the flanges and webs of the stifleners were

m_,.lelcd by nsing two-dimensional shell (and plate) finite
elentenls. The second mlxlel was a finite element discretizaticm

of the one-din)ensional Vhtsov's-lype Ihin-walled beam theory.

A mixed fonmtlation was used will) the fundamental tttlknowns

consisting of I'v,_lh the generalized displacements and stress

resultants (or inlernal forces) in the frame. The frequencies and

modes predicted by the computational models are compared

with those oblaine(I from experiments. A detailed study was
made of the sensitivity of the vibrational restxmse to varialions

in the fiber orieatalion, material properlies of 1he individual

layers, and Ix)undary condith)ns. On 1he basis of 1his slntly 1he

following conclusions `.irejustified:

I. For _m)e of the higher vil'_ralion modes the ex-

per)retinal freqnencies for thin-walled frames :)re generally

between those fi)r the tot:dly and partially clamped supl'x_rts.

2. Identification of 1he n)[xles as in-plane or out-of-plane

can best be accomplished by examining the eaergy components

associ:ued with the in-plune and out-of-phme fon.'es. Also, the

minimum error to be expecled when using one-di,nensional

thin-walled beams can be estimated by computing 1he ratio of

the energy asstx.'iated with the forces neglected in Ihin-walled

beanls 10 )be total energy.

3 For qnasi-isotmpic COmlX)site fnnnes the vibration

freqttencies, asso<:iated with the lower mtx:les, can be ace)irately

predicted by )so)topic one-dimensional bean) tnodel {with

effective elastic m_xluli). The accuracy of predictions is
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dependent on the cmss-seclk)nal distortions during the heavn
derormalions. As the cross-sectional dislorlions increase, the

degr;id:ltion of ac-cnn;cy becomes )]]ore pronounced.

4. The vihrationnl resl_mse of lhin-w:dled semicircular

fnm)es is very sensilive to restraining the displacement compo-

nent of the flanges along the length of the frnme. It is some-
wlml sensilive to Ihe reslr_)in! f,)n the ass<x:ialed rolalion;ll

component, l lowever, it is less sensitive to restraining the
olher displacement and rotation COml)onenls.

5. The ell)rational re)pc)rise of lhin-w'allcd compo,_ilc
frames will) quasi-isolropit' lamin:ilions is more sensitive to

varialions in the +45". -45" fiher angles of the lop flange lhan lw

variations in the (Y' or 9(}" fiher angles. Variations in the O" and

_.)(1"fihers of the weh and the Ix_lh)m 11:mge have a noliceahle

cffecl on some of lhe li)odes, bill their effecl is generally less

llmn )hal of the 45". -45" fibers. The vihr_tional response is

nlso more sensilive to varialions in lhe material coefficients E,.

and GLI than Io all other coefficients.

6. (;jelsvik, A.: The Theory r![ Thin Walled Bars. John

Wiley & Sons. Ltd., 1981.

7,

9.

IlL

6. The senshivity of lhe vihralion freqnencies will]

respet'l to varialions in I"_'dh El. and Gl: t is ;dmost the same for I I.

all Ihe m(xles. ]'his may he altribuled to Ihe qtmsi-isotropic
lamin_tlion used for Ix)th Ihe flanges :rod Ihe web. h suggesls

Ihe fe;vsihility of replacing Ihe quasi-isolropic COml_)Sile by an
equivalent isolropic malerial in the one-din)ensi,nal thin- 12.

walled heam analysis, as was done in the present study.

I.
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APPENDIX A - Symbols

U I , II 2 , W

II I ", U2-, W"

All exlen.sional sstiffness of the laminate

(flanges or web) in tile x i-direelion

A __ in-plane shear stiffne.s.s of Ihe I:mlin:tle { X }

ci mnhiplier.s (see Eqs. 5 and 7) xt "x2. x3

I'. (; effec'tive Young's and .shear n)oduli of the

equiwolent isotn)pie material, re.spectively

I'i.. F.T ela.stic m_luli of tile individual layers of
17.1

ll)e l;n)lin:ile (flanges or web) iv) tile ,
direction of fiber..; and ,lormal to it, {Z}

respectively 0

II:1 Ill;Illix of linear flexibilily c,_:l'ficienl.s for _.i

an individual element P

(;I.'F, (_I-F shear m_Muli iv) the phme of fibers :m(l VI.T

norn)al Io il. re.speelively

Illl Yet'for of slre.s.s resuhant (or inlern:fl _t._z
ft _l'_.'e ) ll_irilllleler.s

h total lhicknes.s of the lan)inate

Ii_ I genendized sliffne.ss matrix for an indi- OPt" _2"' ell"

vidual elemenl (.see Eq.s. 3)
M,,, M,, Mf bending and twisting moments in the

one-dimensional beam nuclei
O)

Mt. M2,Mtz Ix-nding .stre.ss resuhanl.s in tile two- _}
dimen.siomtl m_alel

, Sub,_:ripl.s:

I M I • I M I consi.slelll and generalized .);ins malrices I l)

for ;ill individual elcmcnl Isee his. ?,) 2D

NI. N2. NI2 exlen.si(mal slre.ss resullant.s in file two- s

dinlensio¢lal m(xlel Sul_rscripls:

I
N_ axi:ll fi_rce in tile one-clhnensional bean)

n._lel

()x, (.,)z Ii;insvel-Se she:lr foree.s ill Ihe one-

din_n,;iov)al beam m_xtel

()1-(,)2 lritn.sversc .shear stress re.suhants ill the

two-dimensional nralel

R r;rlius of curvalure of lhe cenlerline of the

fnune (lwe(l in one-dirnensi(,ml bean)

nrKleD'

r l oilier radiu.s of curvature of tile frame (see

Fig. I )

I r< tc_lal comldemenlary .stvain energy of the
fl':ill)e

I I,f. l.lw. [71,t conlribulion.s of tile lop flilllge, web and

I'MHRI, HI fl;lnge (including tile .skirt) to tile

tot;fl complementary .strain energy

I I t , U 2 COmldemenlary strain energy conqxment.s

ass_K.'iated with in-plane and out-of-plane

forces, re.speetively

I I_ complemcmary .strain energy eonlixmenl

as.sociated with tile force.s neglected in the
one-dimen.sional beam Imxlel

.. v. w displ,_cement COmlXments in c_x)rdinate

direclion.s for live one-dimen.sional beam

nu'alel

displacement COmlX)nenl.s of the two-

dimensional m_xiel in Ihe xl. x2, xl

coordinate direction.s

displacement components of Ihe two-

dimensional model in the xt.,x2., x3,

coordin.0e directions

vector of ntx]al disl)l.'lcen)ents

hx-al orthogonal coordinate system used

in conjunction with Ihe two-dimensional

m,xlel (for each of tile web and tile two

fhmge.s)

veclor of element degrees of freedom

particnl:lr .solution (.see Eq.s. 5 and 6)

fiber orient:_tion of indivi(hml layer.s
I;nninalion anti malevi;fl parameters

t11;.VS.sden.sity of material

major Poisson's ratio of tile individtml

layers

lOl_llion t.'olnrwqlenl.s of tile two-

dimensional mtxlel referred Io the local

coordinate .syslem x I , x 2

rotation COllll)Onelll.s Of tile two-

dimen.sional m(xlel referred to the global

('(x_rdinale .sy.slem x I,, x2., x_.

frequency of vibration
- d/dx

one-dimen.sional finite element model

two-dimensional finile element mtxlel

she:ir center

matrix tr;in.sposilion

Table 1.- Decomposition of total complementary energy, U c
into components.

Energy
Components

Associated sa'ess resultant
(see Fig. 2) Comments

Web Ranges ahd Skin

UI NI' NI2 NI' MI, QI in plane response

quantities

U2 MI, MI2, Q1 NI2, M4 out-of-plane re-

sponse quantities

U3 N2' M2, Q2 response quantities

neglected in one-
dimensional model

U c = U l + U2 + U 3
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_ x_ Flanges ET = 1.7x 106psiiit x2 and skin GLT =9.3x 105p si
GTT = 6.51 x 105 psi
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Web Nominal layer thickness = 0.005 in.

Fiber Orientation

Global coordinate. Local coordinate system NL = 8 • [_+45/0/90]s

system NL= 16 • [+45/0/9012 s

Figure 1.- Thin-walled composite frames and coordinale syslems used in present study.
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Generalized Displacements
Referred to Global Coordinates
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Web

Figure 2.- Sign convention for generalized displacements and stress resultants in two-dimensional model.
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t
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Figure 3.- Sign convention for generalized displacements and stress resultants for one-dimensional model.
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Figure 4.- Photograph of thin-walled semi-circular
graphite-epoxy specimens and experimental
equipment.
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Figure 5.- Comparison of finite element and experimental
frequencies for the thin-walled composite
frame with I cross-section.
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Figure 6. - Energy components in the different vibration

modes of the thin-walled composite frame
with Icross-section.
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Top View Side View

('_1= 9.20 (9.2) Hz

k,J
c,_2 = 31.9 (29.7) Hz

o)3 = 37.5 (35.9) Hz

m4 = 73.9 (66.6) Hz

e_5 = 81.3 (78.1) Hz

Nodal Lines on Top
and Bottom Flanges

Experimental Node Lines
(Bottom Flange)

_--Mode Shape

(See Analytical Top View)

Node Unei_- _

! I

! 1 I I 1

f. i I I

I I I I !, I I J

Figure 7.- Mode shapes associated with the lowest five frequencies for the thin-walled
composite frame with I crossosection. Parentheses are experimental frequencies.
Others are clamped finite element model results.
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(c) Bottom flange and skin.

Figure 8.- Sensitivity of vibration frequencies to fiber
orientation angle in the flanges and web of the
thin-walled composite frame with I cross-
section.
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Figure 9.- Sensitivity of vibration frequencies to variations
in material characteristics of the thin-walled

composite frame with I cross-section.
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Figure 10.- Comparison of finite element and
experimental frequencies for the thin-walled
composite frame with J cross-section.
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(a) U 1, U2, and U 3 comoponents. (b) Utf, Uw, and Ubf components.

Figure 11.- Energy components in the different vibration modes of the thin-walled
composite frame with J cross-section.
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Figure 12.- Mode shapes associated with the five lowest frequencies of the thin-walled
composite frame with J cross-section. Parentheses are experimental
frequencies. Others are clamped finite element model results.
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Figure 14.- Sensitivity of vibration frequencies to
variations in the matedal characteristics of the
thin-walled composite frame with J cross-
section.
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Figure 13.- Sensitivity of vibration frequencies to
variations in the fiber orientation angle in the
flanges and web of the thin-walled
composite frame with J cross-section.
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